2018 年 Top 10 影响力 AI 研究论文(13)

这篇论文获得了 ACL 2018 最佳短论文奖;这个新数据集提高了自然语言理解领域研究的问题的复杂度,会为这个领域的模型训练结果提升起到直接的推动作用。未来可能的相关研究

未来可以继续开发出新种类的模型,它们要能够「知道自己不知道什么」,从而对自然语言有更好的理解。

9. Large Scale GAN Training for High Fidelity Natural Image Synthesis

「用于高保真度自然图像生成的大规模 GAN 的训练」

2018 年 Top 10 影响力 AI 研究论文

论文地址

https://arxiv.org/abs/1809.11096

内容概要

DeepMind 的一个研究团队认为目前的深度学习技术就已经足以从现有的 ImageNet、JFT-300M 之类的图形数据集生成高分辨率的、多样化的图像。具体来说,他们展示了生成式对抗性网络(GANs)如果以非常大的规模训练的话,可以生成看起来非常真实的图像。这个「非常大的规模」有多大呢?相比于以往的实验,他们的模型的参数数量是 2 到 4 倍,训练所用的批量大小也达到了 8 倍。这种大规模的 GANs,他们称为 BigGANs,已经称为了分类别图像生成的最新顶级模型。

推荐阅读