ICLR 2019论文解读:深度学习应用于复杂系统控制( 六 )

应用二:大楼的能源管理

同时,本文作者也将提出的深度学习控制框架应用于智能楼宇的供热通风与空气调节系统 (HVAC) 控制。我们通过建筑能耗仿真软件 EnergyPlus 得到一栋大楼的分时能耗数据及各个分区的传感器数据,并使用 ICRNN 建立楼宇输入特征(如室内温度,人流量,空调设定温度等)到输出特征(如能耗)的动态模型。在控制过程中,文章提出的模型可以非常方便地加入一系列约束,如温度可调节范围等。我们通过设计大楼在一定时间段内的温度设置值,并满足相应约束的前提下,来最优化楼宇的能耗。相比于传统的线性模型以及控制方法,使用 ICRNN 的控制方法在保证房间温度维持在 [19, 24] 摄氏度区间内的情况下,帮助大楼节约多于 20% 的能耗。在更大的温度波动区间内 ([16, 27] 摄氏度), 可以帮助建筑节约近 40% 能耗(图 4 左)。同时相比于传统神经网络模型直接用于系统建模,基于 ICRNN 的控制方法由于有控制求解的最优性保证,得到的温度设定值更加的稳定 (图 4 右中红线为 ICRNN 控制温度设置,绿线为普通神经网络控制温度设置)。

ICLR 2019论文解读:深度学习应用于复杂系统控制

推荐阅读