不用看数学公式!图解谷歌神经机器翻译核心部分:注意力机制

乾明 编译整理

量子位 出品 | 公众号 QbitAI

注意力(Attention)机制,是神经机器翻译模型中非常重要的一环,直接影响了翻译的准确度与否。

可以这么说,没有注意力机制,机器翻译的水平只有60-70分。有了注意力机制,翻译的水平就能够达到80-90分了。

它是如何发挥作用的呢?很多人一解释起来,就是铺天盖地的数学公式,让人还没来得及看,就直接懵逼了。

最近,有一篇文章用图解的方式,完整地介绍了“注意力机制”的原理逻辑,并以谷歌神经翻译为例,解释了它的运作机制。

作者说,写这篇文章的目的,是为了让大家在不去看数学公式的情况下,掌握注意力的概念。他也会以人类译者为例,将相关的概念形象化。

神经机器翻译为何需要注意力机制?

神经机器翻译方法诞生于2013年。那一年,牛津大学的研究团队发表了一篇题为Recurrent Continuous Translation Models的论文,提出了一个用于机器翻译的新模型。

推荐阅读