运营商大规模数据集群治理的实践指南( 七 )

数据地图:元数据信息的全景视图,描述所有元数据对象的血缘关系,所处层级覆盖范围由ODS->DWA->DWD->DM层,全面呈现了数据仓库中数据之间的关系。

如果你的数据集群规模不大,比如百节点以内,有非常完备的治理组织架构,按照传统的工具流程和方法论去做数据治理,一般问题不大。但是,如果是在运营商大规模集群环境,随着业务的发展,遇到新的问题时,光靠一些老套路是行不通的,或者说整体治理成本是极大的。

在这样的大规模集群环境下,数据治理的本质其实就是:解决人与人的对抗、人与机器的对抗、人与工具的对抗、人与数的对抗问题。实践经验发现,只是靠堆人的方式,或者只在数据治理文化层面强调人机数的全面协同,要做好大规模集群的数据治理是不太现实的。更务实的做法是基于公司业务和组织架构特点,不断驱动和协同优化,还要借助大数据技术手段,精益推动数据集群侧的持续治理,形成数据治理+集群治理+资产管理的整体协同效应。

运营商大规模数据集群治理的实践指南

推荐阅读