MIT脑洞研究:只听6秒语音,就知道你长什么样( 四 )

在训练完成后,模型在推理过程中才会使用面部解码器恢复人脸图像。

训练过程使用的是AVSpeech数据集,它包含几百万个YouTube视频,超过10万个人物的语音-面部数据。

在具体细节上,研究使用的中每个视频片段开头最多6秒钟的音频,并从中裁剪出人脸面部趋于,调整到224×224像素。

MIT脑洞研究:只听6秒语音,就知道你长什么样

△从原始图像提取特征重建的人脸,以及从声音推测的人脸

之前,也有人研究过声音推测面部特征,但都是从人的声音预测一些属性,然后从数据库中获取最适合预测属性的图像,或者使用这些属性来生成图像。

然而,这种方法存在局限性,需要有标签来监督学习,系统的鲁棒性也较差。

由于人脸图像中面部表情、头部姿态、遮挡和光照条件的巨大变化,想要获得稳定的输出结果,Speech2Face人脸模型的设计和训练变得非常重要。

推荐阅读