你穿衣品味还不如AI,这有一款时尚着装网络模型( 三 )

训练过程

在训练之前,系统首先使用了一个分类器,在时装图像数据上学习「有时尚感」的图像。「有时尚感」的图像作为训练用的参考数据,然后研究者从网络中获取了大量的服装信息,将这些图像一步步修改,将其中的时装部分替换为最不相似的其他部分。这样一来,就可以生成很多负样本,用于帮助 AI 学习什么是不时尚的图像。

训练好分类器后,该系统会逐渐更新着装,以使其更时尚。而后,图像生成神经网络会对调整后的新外观进行渲染,即使用变分自编码器生成轮廓,使用条件生成对抗网络(cGAN)生成颜色和图案。此外,该生成器学习到的潜在编码还被用于识别其库存中的哪些服装最能实现该着装方式。

数据集

在此研究中,作者使用 Chictopia10 数据集进行实验。此外,作者们使用了 15930 张图像来训练生成器,12744 张图像训练时尚分类器。

该数据集用于提供时尚图像,而剩余的「不时尚」图像,根据前文所述,是通过网络图像+逐步替换的方式修改的。具体而言,研究者首先使用 Chictopia 全身时装图像(一个正样本),从中选取一部分进行修改,使用一个不同的时装替换掉这个部分。为了提升「不时尚」图片的选择效果,研究者选择的是新时装和被替换部分之间欧几里得距离(用 CNN 提取出的隐向量)最远的那种。

推荐阅读