CVPR 2019 | 步步为营!通过迭代式模糊核预测提高超分辨质量

科技频道提示您本文原始标题是:CVPR 2019 | 步步为营!通过迭代式模糊核预测提高超分辨质量

基于迭代模糊核修正的盲超分辨方法

本文解读一篇由港中大(深圳)与哈工大合作发表在CVPR2019的超分辨方向的论文,该工作与几篇近年的文章密切相关,相关部分我已在文中做了必要的说明和解释,更多细节可点击文章末尾的论文链接深入了解。

1.研究动机

超分辨研究旨在用低分辨图片恢复其对应的高分辨图片,它的反过程是图像从高分辨到低分辨的降级或者说退化,这一过程一般被抽象为:

其中LR代表低分辨图像,HR代表高分辨图像。该模型中有3个重要的组件:1) 模糊核k. 2)下采样操作s. 3)加性噪声n。低分辨图像可以看做低分辨图像被模糊核k做卷积之后再经下采样和噪声干扰后得到。现有的大多数超分辨方法都假设模糊核是已知的、固定的,甚至为了简化问题直接舍去,然而真实场景下的模糊核往往是未知而又复杂的。正确的模糊核估计对于超分方法至关重要,模糊核的假设偏差会使超分模型的性能大幅下降,产生过平滑或过锐利的结果,如图1所示。

推荐阅读