华人科学家造全球首个存算一体通用AI芯片,类脑计算关键元件再获验证( 七 )

全功率工作下,芯片只需 300 毫瓦的功耗,就能实现每秒每瓦特 1880 亿次运算。虽然计算速度相比于英伟达最新推出的人工智能芯片(每秒每瓦特可达 9.09 万亿次运算)略显逊色,但这款芯片在功耗和数据存取上有着明显的优势。

而在通用性的验证上,团队使用忆阻器阵列芯片,实现了三种人工智能的算法。首先是称为“感知器”(perceptron)的著名机器学习算法,该算法也是最为常见的用来进行信息分类的机器学习算法之一。团队用这款芯片成功地实现了单层感知器的运算,并将其用来识别希腊字母的有噪图片。

这款芯片实现的另一种更复杂的算法是“稀疏编码”(sparse coding)算法。这种算法通过比较神经元来优化神经网络,剔除无效的神经元,找出最优的神经元连接方式,进而针对目标找出最优的神经网络,可以用来有效地进行特征提取、数据压缩以及数据分类等工作。

最后,这款芯片实现的是双层神经网络的无监督学习算法,用来识别和判断乳房肿瘤图像。神经网络中的第一层使用主成分分析方法,来自主识别图像中的特征,第二层使用感知器来进一步判断图像中的肿瘤是否是恶性的。这种算法在这款芯片上运行的准确率可以高达 94.6%,这一结果已经非常接近在传统芯片上运行得到的 96.8% 的准确率。这一细微差距,主要是忆阻器元件在分类边界上的电荷不确定性造成的。

推荐阅读