当推荐遇到社交:美图的推荐算法设计优化实践(12)
当不同任务的目标相关性较弱,或者损失函数的输出值范围差异较大时,多目标模型的调优存在比较大的困难;
使用多目标模型,会导致不同目标的优化存在比较大的耦合,延迟整体优化进度,在产品要求快速迭代的场景下,这种技术手段不一定能够很好的满足业务需求。
为了解决多目标模型存在的一些问题,我们通过拆分多目标模型的各个目标,得到多个单目标模型,并对每个单目标模型分别进行优化。在美拍双列 feed 流场景下,我们进行了相应的尝试,在人均时长不变的情况下,人均关注提升了 2.98%。通过进一步调整模型的优化目标,人均时长再次提升了 19.37%,人均关注提升了 14.1%。
多目标优化之多个多目标模型
当推荐场景的优化目标增加,多模型的方案会存在维护成本高,线上资源开销大,各个任务的模型无法利用其它任务的数据等问题。
综合多模型和多目标模型的优点,采用多个多目标模型是解决多目标任务的有效手段。在美拍场景下,通过同时优化关注、时长、播放等目标,人均关注提升 12.18%,活跃留存提升 25.67%。
推荐阅读
- xyg|XYG晋级S组,还没来得及高兴就遇到了生涯最强的对手,大仙都愁眉苦脸
- 狼队|fly杀伤力有多强?张大仙一句评价太到位,幸好他们没遇到狼队
- 腕豪|LOL:排位选腕豪要BAN掉的五个英雄,遇到第二位,打野来了也没用
- 我的世界|《我的世界》领衔!推荐9款低配置、超耐玩的游戏神作
- 单机|游戏推荐:当前八款最热门的大型单机,都是不容错过的精品游戏
- 游戏推荐|11月游戏推荐,每年的游戏黄金月份,你还在不知道玩什么吗?
- 盖伦|金铲铲:上大分阵容推荐!赌狗阵容变异大嘴湮灭一切!
- 游戏推荐|Steam疯狂周三特惠游戏推荐,每一款都是特别好评!
- 光剑|DNF:鬼剑士武器幻化推荐!光剑首推“灯管”,流光系人气最高
- 传奇|璀璨复古传奇:法师遇到战士只能被按在地上摩擦?道士表示不服