8 篇论文梳理 BERT 相关模型(16)
作者尝试使用 BERT 处理该任务,调整输入为 [CLS,Claim,Reason,SEP,Warrant],通过共用的 linear layer 获得一个 logit(类似于逻辑回归),分别用 warrant0 和 warrant1 做一次,通过 softmax 归一化成两个概率,优化目标是使得答案对应的概率最大。
最终该模型在测试集中获得最高 77% 的准确率。需要说明的是,因为 ARCT 数据集过小,仅有 1210 条训练样本,使得 BERT 在微调时容易产生不稳定的表现。因此作者进行了 20 次实验,去掉了退化(Degeneration,即在训练集上的结果非常差)的实验结果,统计得到上述表格。
图20/23
表 6:作者的探索性实验(Probing Experiments)
虽然实验结果非常好,但作者怀疑:这究竟是 BERT 学到了需要的语义信息,还是只是过度利用了数据中的统计信息,因此作者提出了关于 cue 的一些概念:
A Cue's Applicability:在某个数据点 i,label 为 j 的 warrant 中出现但在另一个 warrant 中不出现的 cue 的个数。
推荐阅读
- 式神|阴阳师:(SSR篇)PVE向辅助式神梳理,御魂配置与阵容构建解析
- 崩坏3|崩坏3兔女郎事件后续梳理,玩家同意关国服,声优二创引争议
- 生化危机8|《生化危机 8:村庄》讲了什么?剧情故事完全梳理与背景解读
- 原神|经典游戏《豪血寺一族》关系梳理,剪不断理还乱的家族血统
- 阿轲|王者荣耀:S22更新思路梳理,版本之子已预定,阿轲胜率将猛升!
- 云计算需求提前大规模爆发,产业链公司梳理
- Berty发布gomobile-ipfs,手机端也可以直接访问IPFS网络!
- 论文查重选择合适软件需要看哪些方面
- 论文怎么免费查重找对软件才是关键
- 论文数据哪里找?这些网站不能少!