云从科技&上海交大的跨模态技术成果:探索多层关系的REMNLP 2021 | 研究者们( 二 )
另一方面,现有的工作往往忽视了不同视频片段之间的关系,或者仅仅采用了几层卷积网络的堆叠,存在计算量大、有噪声影响等缺点,本文的研究者们提出了一种稀疏连接的图网络,仅仅考虑了起始或者终止时间相同的视频片段,高效地建模了不同视频片段之间的关系,帮助模型更好地区分视觉上相似的视频片段。
文章插图
文章插图
RaNet一共包含5个部分:(1)多模态的特征编码模块;(2)候选视频片段的生成模块;(3)候选视频片段和查询语句的交互模块;(4)不同视频片段的关系构建模块;(5)结果选择模块。
- 特征编码模块中,研究者们采用了在时序动作检测(Temporal Action Localization)中表现优异的GC-NeXt来获取视频序列中的时序信息,使用双向的LSTM来获取语言信息的长时间依赖。
- 候选视频片段生成模块中,研究者们借鉴了之前工作2D-TAN的方式,构建了一个二维的时序网格图,每一个小网格都代表一个候选视频片段,其特征是由起始时间帧的特征和终止时间帧的特征串联而得。

文章插图
- 视觉语言交互模块中,研究者们同时构建了视频片段-句子层面的关系和视频片段-单词层面的关系。对于视频片段和句子的关系,研究者们之间对语言特征进行max-pooling,然后和视频片段特征进行点乘。对于视频片段和单词的关系,研究者们通过语言特征和视频片段特征首先构建出一个注意力权重矩阵,然后再与视频片段特征交互,动态地生成query-aware的视频片段表征。这种粗粒度和细粒度结合的方式能够充分地交互视觉和语言两种模态之间的信息。
- 视频片段关系构建模块中,研究者们将每个候选视频片段视作图的点,将这些视频片段之间的关系视作图的边,构建了视频片段关系的图网络模型。考虑到重叠比较高的视频片段关联性更强,研究者们在构建图时仅考虑了和当前候选视频片段具有相同起始时间或者终止时间的视频片段,在网格图中就是一种十字架的形式。这样构建图的方式不仅可以减少不相关视频片段带来的噪声影响,还能有效提高模型的效率。
- 结果选择模块中,研究者们采用一个卷积层和sigmoid激活层为每个候选视频片段进行打分,根据得分从大到小排序,选择top-1或者top-5作为最终的预测视频片段。
推荐阅读
- 阿里巴巴|马云“接班人”是啥来头第一天上任,阿里巴巴损失517亿!
- 工地|“小马云”已不火,如今“工地马云”火了,网友:确定不是本人?
- 阿里巴巴|曾是阿里高管,遭马云“忽视”创办410亿公司,却进腾讯口袋
- 收购|外媒消息:腾讯将以数十亿元人民币从小米手中收购黑鲨
- 阿里|胡润公布全球公司排名,马云创始人头衔也被剥夺?
- 德国|谷歌拟从搜索结果中删除新闻服务 向德国反垄断机构妥协
- 电商|马云曾用224亿收购的大润发,4年多过去了,大润发如今发展如何?
- 以旧换新|从创新产品到升级服务 京东电器年货节以“后背”担当谱写守护篇章
- 网易云音乐|「年度报告」刷屏,大数据真能代表你?
- 从业者|这行成为“香饽饽”?“懒人经济”时代来临,大批从业者月入万元