用于多功能应用的多层 MXene 异质结构和纳米杂化物:综述(一)( 四 )


1  M NaHF2(12 h 60 °C)
1  M KHF2(12 h 60 °C)
Ti3C2
Ti3AlC2
27.5  M NaOH (12 h 270 °C)
fluorine-free  method e.g. alkali-etching strategy at high temperature

Ti3C2
Ti3AlC2
NH4F hydrothermal (24 h 150  °C)
preparation  by hydrothermal method and analysis of electrochemical properties

Nb2C
Nb2AlC
50  wt % HF (90 h RT)
anode  material for LIB

V2C
V2AlC
50  wt % HF (90 h RT)
V2C
V2AlC
3.35  M NaF in 12 M HCl (48 h 90 °C)
preparation  with NaF at high temperature as anode for LIB

Zr3C2
Zr3Al3C5
1  M NaHF2(12 h RT)
comparison  between structural stability of Zr3C2Tzand Ti3C2TzMXenes

1  M KHF2(12 h RT)
MO2TiC2
MO2TiAlC2
50  wt % HF (48 h 55 °C)
synthesis  and analysis of MO2TiC2TX MO2Ti2C3TX and Cr2TiC2TX

MO2Ti2C2
MO2Ti2AlC2
50  wt % HF (96 h 55 °C)
Cr2TiC2
Cr2TiAlC2
5  M LiF in 6 M HCl (42 h 55 °C)
Nb4C3
Nb4AlC3
50  wt % HF (96 h RT)
synthesis  of phase-pure Nb4C3with formula M4X3

(NbTi)4C3
(NbTi)4AlC3
50  wt % HF (90 h 50 °C)
Nb4C3TX multilayer  MXene for energy storage applications

10  M LiF in 12 M HCl (180 h 50 °C)
Ti3C2
Ti3SiC2
30  wt % HF + (oxidant) e.g. (HNO3 KMnO4 (NH4)2S2O8 or FeCl3) (47 h 40 °C)
oxidant-assisted  selective etching of Si from Ti3SiC2

Ti3C2Tz
Ti3AlC2
10  wt % HF (24 h 25 °C) + LiCl LiBr LiI
intercalation  and deintercalation mechanism

48  wt % HF + HCl HBr HI H3PO4 or H2SO4
Ti3C2
Ti3AlC2
40  wt % HF (48 h 60 °C) + Ti3C2 calcinated high temp.  200–1200 °C
vacuum  calcination for better electrochemical and thermal properties for LIB

Ti3C2TX
Ti3AlC2

推荐阅读