| | | 1 M NaHF2(12 h 60 °C)
| | |
| | 1 M KHF2(12 h 60 °C)
| | |
Ti3C2
| Ti3AlC2
| 27.5 M NaOH (12 h 270 °C)
| fluorine-free method e.g. alkali-etching strategy at high temperature
|
|
Ti3C2
| Ti3AlC2
| NH4F hydrothermal (24 h 150 °C)
| preparation by hydrothermal method and analysis of electrochemical properties
|
|
Nb2C
| Nb2AlC
| 50 wt % HF (90 h RT)
| anode material for LIB
|
|
V2C
| V2AlC
| 50 wt % HF (90 h RT)
| | |
V2C
| V2AlC
| 3.35 M NaF in 12 M HCl (48 h 90 °C)
| preparation with NaF at high temperature as anode for LIB
|
|
Zr3C2
| Zr3Al3C5
| 1 M NaHF2(12 h RT)
| comparison between structural stability of Zr3C2Tzand Ti3C2TzMXenes
|
|
| | 1 M KHF2(12 h RT)
| | |
MO2TiC2
| MO2TiAlC2
| 50 wt % HF (48 h 55 °C)
| synthesis and analysis of MO2TiC2TX MO2Ti2C3TX and Cr2TiC2TX
|
|
MO2Ti2C2
| MO2Ti2AlC2
| 50 wt % HF (96 h 55 °C)
| | |
Cr2TiC2
| Cr2TiAlC2
| 5 M LiF in 6 M HCl (42 h 55 °C)
| | |
Nb4C3
| Nb4AlC3
| 50 wt % HF (96 h RT)
| synthesis of phase-pure Nb4C3with formula M4X3
|
|
(NbTi)4C3
| (NbTi)4AlC3
| 50 wt % HF (90 h 50 °C)
| Nb4C3TX multilayer MXene for energy storage applications
|
|
| | 10 M LiF in 12 M HCl (180 h 50 °C)
| | |
Ti3C2
| Ti3SiC2
| 30 wt % HF + (oxidant) e.g. (HNO3 KMnO4 (NH4)2S2O8 or FeCl3) (47 h 40 °C)
| oxidant-assisted selective etching of Si from Ti3SiC2
|
|
Ti3C2Tz
| Ti3AlC2
| 10 wt % HF (24 h 25 °C) + LiCl LiBr LiI
| intercalation and deintercalation mechanism
|
|
| | 48 wt % HF + HCl HBr HI H3PO4 or H2SO4
| | |
Ti3C2
| Ti3AlC2
| 40 wt % HF (48 h 60 °C) + Ti3C2 calcinated high temp. 200–1200 °C
| vacuum calcination for better electrochemical and thermal properties for LIB
|
|
Ti3C2TX
| Ti3AlC2
推荐阅读
|