研究性学习报告|生物研究性学习报告( 三 )
在日常生活中,简单的正则构图可为平面(如墙壁,地板)填充视觉上的空白感.可曾留意,一般用来密铺平面的正则图案.有哪几款 要密铺平面,关键在于每块正则图形在接合于一点时,其内角的整数倍数是否相当于同顶角(在一相同顶点上,全部角的总和等于360 .n边形的内角和=180 (n-2).
【研究性学习报告|生物研究性学习报告】我们可以作以下的运算:设m 个正n 边形在平面上的一点接合,由于正n 边形的每一个内角是(n 02) 180 /n =360 因此得: (n 02) 180 /n =360
m(2)
n
图形
3
6
六边形
4
4
四边形
5
3.5
------
6
3
三角形
化简后得mn-2m-2n+4=4
m(n-2)-2(n-2)=4
(m-2)(n-2)=4*
根据*,便可把 和 的关系与密铺平面的多边形选择如:
由此可见,以正则图形密铺平面只有三种选择.但这三种基础图形却可演变出其它多姿多彩的图案.所以,铺砌问题一直是数学家和建筑材料商们所感兴趣的问题.
数学并不是冷漠的事实和数据.罗素说:数学,如果正确地看它,不但拥有真理,而且也有至高无上的美,正像雕刻中泛着一种严肃的美.从来,生活中的数学对于成年人来说,是很简单,很容易被发现的.我们作为学生,生活在这信息丰富的时代,就更应该将自己所学的科学知识运用到实际生活去,学以致用!
推荐阅读
- 工作计划|办公室文秘个人工作计划报告
- 工作计划|大学学习部工作计划报告怎么写
- 工作计划|学习部工作计划怎么写范文
- 工作计划|中班安全工作计划报告怎么写
- 工作计划|幼师学期工作计划报告怎么写
- 工作计划|2022年工作计划报告怎么写
- 工作计划|2022小学财务工作计划报告范文
- 工作计划|2022年度工作计划报告范文
- 工作计划|行政秘书个人工作计划报告
- 工作计划|小学生寒假学习计划怎么写