必备!人工智能和数据科学的七大 Python 库( 八 )

8features = np.delete(tpot_data.view(np.float64).reshape(tpot_data.size,-1), tpot_data.dtype.names.index('class'), axis=1)

9training_features, testing_features, training_classes, testing_classes = \

10train_test_split(features, tpot_data['class'], random_state=42)

11exported_pipeline = make_pipeline(

12RBFSampler(gamma=0.8500000000000001),

13DecisionTreeClassifier(criterion="entropy", max_depth=3, min_samples_leaf=4, min_samples_split=9)

14)

15exported_pipeline.fit(training_features, training_classes)

16results = exported_pipeline.predict(testing_features)

就是这样。你已经以一种简单但强大的方式为Iris数据集构建一个分类器。

现在我们来看看MNIST的数据集:

推荐阅读