2018 年 Top 10 影响力 AI 研究论文

科技频道提示您本文原始标题是:2018 年 Top 10 影响力 AI 研究论文

AI 科技评论按:Topbots 总结了他们眼中 2018 年里 10 篇最为重要的 AI 研究论文,带领大家领略过去的一年中机器学习领域的关键进展。现在点开了这份清单的人显然是极为幸运的,获得了一个精彩瞬间回放的机会。

不得不说,考虑到这个领域极快的发展速度和极多的论文数量,肯定还有一些值得阅读的突破性论文没能包括在这份榜单中。不过这份清单是一个好的开始。

1. Universal Language Model Fine-tuning for Text Classification

「用于文本分类的通用语言模型的精细调节」

论文地址

https://arxiv.org/abs/1801.06146

内容概要

两位作者 Jeremy Howard 和 Sebastian Ruder 提出了可以用预训练的模型解决多种 NLP 任务的想法。通过这种方法,研究人员不需要为自己的任务从零开始训练模型,只需要对已有的模型做精细调节。他们的方法,通用语言模型精细调节 ULMFiT ,得到了当时最好的结果,比其他模型的错误率降低了 18% 到 24%。更令人钦佩的是,ULMFiT 只用了 100 个有标签样本得到的结果就可以和用 10K 有标签数据从零开始训练的模型一样好。

推荐阅读