克拉克拉(KilaKila):大规模实时计算平台架构实战( 三 )

克拉克拉(KilaKila):大规模实时计算平台架构实战

图四:克拉克拉实时计算框架

克拉克拉(KilaKila):大规模实时计算平台架构实战

图五:LogHup 与 Storm关系

上图中红色虚线框中就是LogHub Storm Spout,每个Storm Topology会有一组Spout,同组内的Spout共同负责读取Logstore中全部数据。不同Topology中的Spout相互不干扰。每个Topology需要选择唯一的LogHub Consume Group名字来相互标识,同一 Topology内的Spout通过 Consumer Library来完成负载均衡和自动failover。Spout从LogHub中实时读取数据之后,发送至Topology中的Bolt节点,定期保存消费完成位置作为checkpoint到LogHub服务端。

四、实时数据存储

克拉克拉实时计算框架中存在诸多数据缓存、永久存储等场景需求。面对该问题,克拉克拉采用了阿里云OTS组件方案。OTS也称为表格存储(Table Store)是阿里云自研的NoSQL多模型数据库,提供海量结构化数据存储以及快速的查询和分析服务。表格存储的分布式存储和强大的索引引擎能够提供PB级存储、千万TPS以及毫秒级延迟的服务能力。通过使用OTS所提供的Java SDK开发包实现了Storm计算过程中所涉及到的数据存储需求。

推荐阅读