深扎产业纵深处,扩博智能是如何玩转计算机视觉的?〡IF19( 九 )

我们再来对比一下我们过去的检修方式,以及我们到底可以提供什么样的新技术解决方案。

比如说大家在过去看到我们所做的检修,有一些人会拿一根这种检修绳,并且在这里贴一个标签,给它标号,而且把叶片也标号,这是我们从传统的报告当中会读到的数据。可能我们不知道这个缺陷是在哪里,我们不知道叶片具体的受损部位在哪里,但是现在我们可以通过机器学习、算法、计算机视觉来解决这个问题。我们至少可以知道它的规模多大,它在风机上的哪个地方,还可以预估大概需要多长时间才可能把它完全修好。

(此处为 PPT)

这是一个比较典型的问题,我们最后计算出来大概需要 3 个月就可以把它修好。我们可以去进行一个基本的预测,一般情况下,检修需要花很长的时间,可能也需要好几个月才可以真正去派驻合适的工作人员,技术人员解决这些技术问题。

而且,有的时候需要提前把风机关停,特别是在风速非常小的季节,我们也可以通过算法计算决定什么时候关掉这些风机。我们不仅可以了解这些风机的细节,而且还有专门的基础设施,是我们软件的外部辅助。

推荐阅读