只要算法够厉害,白墙能当镜子用:我初中物理都白学了 | Nature新论文( 七 )

y = A(po)f + b

y是墙上各点的亮度,我们选取126×126个点,也就总共15,876个变量的方程组,其中A(P0)代表一个变换矩阵。

其实Goyal小组去年已经做出了相关成果,但当时必须要知道障碍物的形状以及位置,才能恢复图像。

但这次他们把难度又提高了一个档次,仅仅知道障碍物的形状,却不知道位置。

Goyal的方法是,先估计出障碍物的位置,再通过平均位置附近的49组数据反向恢复图像。

再发展下去,他们的算法连障碍物是什么形状都不需要知道,只通过墙上模糊的影子,就能它的样子。

相关研究

通过AI算法分析光影预测直接看不到的物体不仅有这一种方法,早在2010年,MIT Media Lab的研究人员已经有了成果。

和波士顿大学不同,这种方法需要单独购置特殊设备,即一台能够发射出激光的相机。

与耳朵接收回音类似,这种方法通过手机激光照在物体表面的反射路径,算法预测角落中直接看不到的物体。

推荐阅读