旷视科技发布最大商品识别数据集,推动新零售自动收银场景落地( 六 )

通过把剪裁出来的单品随机粘贴在背景上以合成 10,000 张结算图,接着用其训练检测器,这是第二种基线方法,表示为 Syn。

为把上面合成的结算图渲染的更加逼真,旷视借助 Cycle-GAN 转化合成图,如图 9 所示。接着用这 10,000 张渲染的图像训练检测器,这是第三种基线方法,表示为 Render。

旷视科技发布最大商品识别数据集,推动新零售自动收银场景落地

图 9:合成结算图与渲染结算图实例对比。

此外,还可以混合使用合成图与渲染图训练检测器,这是第四种基线方法,表示为 Syn+Render。

针对 ACO 任务提出的整个方法的 pipeline 如图 10 所示:

旷视科技发布最大商品识别数据集,推动新零售自动收银场景落地

图 10:基线方法 pipeline。

实验结果

在进入到实验结果之前,需要说明的一点是最优的评测指标并不是传统检测任务中的 mAP50、mmAP 等指标,而是本文提出的 cAcc(Checkout Accuracy),即正确核验一张图像内所有商品的精度,简单来说,就是“整单正确率”。

推荐阅读