旷视科技发布最大商品识别数据集,推动新零售自动收银场景落地( 二 )

CV 技术+场景,从来不是一条坦途。从图像识别角度讲,ACO 的落地布满靳棘,其中既有来自数据本身的问题,也有模型训练的因素,最后可归结为 4 个方面: 1)large-scale,2)fine-grained,3) few-shot 和 4)cross-domain。

尽管存在上述问题,ACO 还是有着潜在的研究与商业价值。如果有标注精良的数据集,这一问题或可迎刃而解。为此,旷视科技南京研究院打造了一个目前最大的商品识别数据集——RPC(Retail Product Checkout),来推动新零售自动收银场景的相关研究和技术进步,它的商品种类高达 200,图像总量达 83k,真实模拟零售场景,且逼真度超过现有同类数据集,同时充分体现出 ACO 问题的细粒度特性。

旷视科技发布最大商品识别数据集,推动新零售自动收银场景落地

图 2:RPC 数据集对比同类数据集。

RPC 数据集有两种形态的图像:1)单品图(exemplar image),在受限环境下拍摄,只包含单一产品,对应于网购商品图;2)结算图( checkout image),包含用户购买场景下的多个商品,有助于研究者解决相关子问题,比如检测或计数。

推荐阅读