OpenAI解密神经网络黑匣子:AI图像分类原来是张激活地图( 二 )

OpenAI解密神经网络黑匣子:AI图像分类原来是张激活地图

图2/24

(单个神经元)单个神经元的可视化使隐藏层变得有意义,但是忽略了神经元之间的交互作用——它只向我们展示了高维激活空间的一维正交探针。(成对交互)成对的交互揭示了相互作用的效果,但它们只显示了具有数百个维度空间的二维切片,而且许多组合是不现实的。(空间激活)空间激活通过对可能激活的子流形进行采样来向我们显示许多神经元的重要组合,但它们仅限于给定示例图像中出现的那些神经元。(Activation Atlas)通过对多种可能的激活进行采样,Activation Atlase为我们提供了一个更全面的概览。

Activation Atalas是建立在特征可视化的基础上,这是一种研究“神经网络隐藏层可以表示什么”的技术。

在深入研究Activation Atalas之前,先简要回顾一下如何使用特征可视化使激活向量变得有意义,也就是如何“透过网络的眼睛看”事物。 这种技术将成为Activation Atalas的基础。

注:本文关注的神经网络是InceptionV1,也称GoogLeNet。

推荐阅读