新思科技Chekib:AI芯片架构创新面临四大挑战( 八 )

SFA能带来什么好处呢?首先数据访问量能降低10到100倍,所以存储子系统的功耗能下降10倍以上;在28nm条件下,系统能效比超过4 TOPS/W,计算资源利用率也很高,超过80%,我们可以看到现在公开的很多AI架构芯片资源利用率都只在50%上下浮动。另外SFA面积非常小,在28nm工艺条件下的Post Layout面积是每TOPS 0.5平方毫米。

新思科技Chekib:AI芯片架构创新面临四大挑战

图6/8

同时,SFA可以做到通用型的AI芯片,可以支持任意已知的神经网络,等同于GPU的兼容性。很多设计芯片的朋友都知道,想要做一款通用型的AI芯片非常非常困难,有的只能支持几个神经网络,有的会在神经网络的参数上有非常大的限制,只能支持一些,有些可能就不支持了。

SFA对所有的神经网络参数、架构没有任何限制,对数据类型也任何限制,包括INT8、INT16、浮点16、浮点32、甚至包括一些自定义的浮点,全都可以支持;并且对于深度学习里所讲到的稀疏化的数据,也是可以自适应去支持,不用事先做任何的预处理。我们知道通用型对芯片设计是非常重要的,因为我们做芯片设计的人通常所面临的场景是非常广泛的,只为一个场景做一个具体的芯片可能成本就太高了。

推荐阅读