原创<br> 8种优秀预训练模型大盘点,NLP应用so easy!( 三 )

Flair

其他预训练模型

StanfordNLP

多用途NLP模型

多用途模型在NLP领域里一直为人们所关注。这些模型为提供了许多令人感兴趣的NLP应用 - 机器翻译、问答系统、聊天机器人、情感分析等。这些多用途NLP模型的核心是语言建模的理念。

简单来说,语言模型的目的是预测语句序列中的下一个单词或字符,在我们了解各模型时就会明白这一点。

如果你是NLP爱好者,那么一定会喜欢现在这部分,让我们深入研究5个最先进的多用途NLP模型框架。这里我提供了每种模型的研究论文和预训练模型的链接,来探索一下吧!

ULMFiT模型

ULMFiT由fast.ai(深度学习网站)的Jeremy Howard和DeepMind(一家人工智能企业)的Sebastian Ruder提出并设计。可以这么说,ULMFiT开启了转移学习的热潮。

正如我们在本文中所述,ULMFiT使用新颖的NLP技术取得了令人瞩目的成果。该方法对预训练语言模型进行微调,将其在WikiText-103数据集(维基百科的长期依赖语言建模数据集Wikitext之一)上训练,从而得到新数据集,通过这种方式使其不会忘记之前学过的内容。

推荐阅读