渐进式图像重构网络:像画画一样重构图像( 八 )
表 1:S2I 合成、I2I 转化和 IR 三个领域内主要方法的主要差异。表示不同特征的输入,表示输出质量。
图 2:PI-REC 的网络架构。它包含三个阶段:模拟阶段、生成阶段和微调阶段,并且在渐进训练过程中只有一个生成器和一个判别器。
图 3:不同生成器架构之间的输出结果对比:带有 U 网络(来自 BicycleGAN)的 IR、PI-REC 的唯一生成阶段、包含模拟阶段的生成阶段和总体阶段。
图 4:a)不同稀疏级别输入上的结果。由于训练时的 HC 操作,本文的模型对一组用于测试的特定超参数不敏感。b)有 HC 操作和没有 HC 操作的输出结果对比。在训练中应用 HC 操作时,研究人员可以在局部细节上获得更好的质量,并从非常稀疏的内容或样式中获得满意的输出。
推荐阅读
- 人类|能绘制复杂函数图像,玩家在《我的世界》里打造了巨型图形计算器
- cmos|索尼跌落神坛!中国厂商横刀立马,深度解密CMOS图像传感器
- 《生化危机3》重制版泄露最新图像,更多可怕的Boss出现
- 外媒称鸿海下周“渐进式”恢复中国生产 苹果产能有保障了?
- 直面后现代,重构生活秩序
- 开年丢出重磅“炸弹”,2020年AMD能重构PC芯片市场格局吗?
- 「金测评」华为路由A2深度体验:重构家庭WiFi体验
- 【金测评】华为路由A2:一触即发重构网络体验
- 专家绘出西施真实面貌图像,众人看后只有1个字可说:美!
- VMware:融合容器与虚机,重构应用与体验