Facebook AI通过“学习”视频,自动生成游戏角色( 三 )

首先,需要将包含一个或多个人物特征的视频输入到针对特定域(例如,跳舞)训练的 Pose2Pose 网络,将其运动状态和自身隔离,用于确定哪些背景区域可以被合成图像所替换。随后 Pose2Frame 网络运用这些组合的运动姿势数据,区分场景中与角色相关的变化,如阴影、反射以及角色的独立特征。最后与预先设计好的背景混合输出。

在实验部分,研究人员采集了三段视频,每段视频长度为五到八分钟,视频的主角分别是一个户外网球运动员,一个在室内舞剑的人,和一个正在走路的人。之后与一个用三分钟跳舞视频训练的神经网络相比,该实验结果对人物动态元素的捕捉更为成功。(排除角色服装和镜头角度的变化)。

该技术投入使用后,人们将有机会成为游戏中人物的化身,自定义游戏角色,并赋予角色独有的动作形态。这项基于 AI 技术的角色生成系统可能会催生更多不同类型的游戏,逼真且个性化可能是未来游戏行业发展的一个方向。

参考:

https://arxiv.org/pdf/1904.08379.pdf

https://appuals.com/facebook-developers-push-ai-to-new-limits-making-games-out-of-a-video-in-coming-years/

推荐阅读