简单粗暴而有效的改图:自动语音识别数据扩增的“一条野路”( 三 )

SpecAugment 的“出彩”之处

首先,在模型训练之前将输入数据——音频数据的梅尔倒谱,进行图像处理,这也是 SpecAugment 这条野路出彩的基础。即对梅尔倒频谱的横轴一段时间步长的频谱进行左或右扭转翘曲、或者掩蔽一段时长的谱图(时间屏蔽,对纵向进行掩蔽)、或是某些梅尔频率的信号(频率屏蔽,对横向进行掩蔽),得到了一系列的扩增样本。

这样的处理使得模型能够学习到时间轴上发生损失变形的音频、部分频率缺失的音频,以及丢失部分语音片段的音频的特点,增加了训练模型对这些信息的处理能力,也增强模型的泛化能力。

简单粗暴而有效的改图:自动语音识别数据扩增的“一条野路”

图2/7

图 | 梅尔倒频谱的扩增变换手段:从上到下依次为没有应用增强、一定时间步长的扭曲,频率屏蔽和时间屏蔽。(来源:Daniel S. Park,et al/ Google Brain)

模型训练

输入数据处理完毕后,训练语音识别模型,这里采用 LAS(Listen Attend and Spell networks)模型。LAS 模型主要是由 Listener 和 Speller 两个子模型组成,其中 Listener 是一个声学编码器(Encoder,收集数据,相当于“听”),Speller 是一个基于注意力机制的解码器(Decoder,将收集的特征翻译成字符,相当于“说”)

推荐阅读