澎思科技资深算法研究员罗伯特:有限算力资源下的深度学习与人脸识别( 五 )

澎思科技资深算法研究员罗伯特:有限算力资源下的深度学习与人脸识别

人脸识别属于图像处理的领域。图像处理领域中最常见的层是卷积层,比较一下卷积层和全连接层。如下图所示,全连接层每个输入节点跟任何输出节点都构造一个连接,而卷积层只有考虑特殊的连接。一个卷积核扫描所有输入图的窗口,可以做到参数共享、参数数量降低。可训练参越多,越容易发生过度适应现象,因卷积层大大降低了参数数量,其过度拟合现象大量减少,卷积操作可以理解为深度学习网络的正则化。另外全连接不考虑二维图像拓扑,而卷积层更好地利用相邻像素之间的关联性。

澎思科技资深算法研究员罗伯特:有限算力资源下的深度学习与人脸识别

来看一下深度学习早期的一个完整的深度学习网络模型。下图显示所谓LENET5的拓扑:卷积层1、欠采样层2、卷积层3、欠采样层4、卷积层5、全连接6、分类输出层7。LENET5对32x32大小的输入通过卷积和欠采样和全连接层提取84维的特征向量,对84维的特征向量进行最终的分类,都在一个联合框架中。

推荐阅读