如何提取网络架构的先验知识?为它画幅素描吧!
科技频道提示您本文原始标题是:如何提取网络架构的先验知识?为它画幅素描吧! 来源:腾讯网
选自谷歌博客
机器之心编译
参与:郭元晨、Geek AI
五花八门的深度神经网络看似结构各不相同,其内在学习逻辑实则有迹可循。且看谷歌的研究人员如何通过「递归速写」方法提取知识、进行神经网络压缩,最终实现在未曾训练过的场景下的智能推理。
许多经典的机器学习方法专注于如何利用可获得的数据来做出更准确的预测。最近,研究者们也开始关注其他重要的目标,比如怎样设计一个小巧、高效又鲁棒的算法。在这些目标的驱动下,一个自然的研究课题就是设计一个基于神经网络的系统,该网络可以高效地存储其中编码的信息。换句话说,也就是设计一种概括复杂深度网络处理输入的方法的简单机制(像「速写」(sketch)一样)。「神经网络速写」是一个被广泛研究的领域,可以追溯到 Alon、Matias 和 Szegedy 的奠基性工作「The space complexity of approximating the frequency moments」。这项工作中,研究者们使得神经网络可以高效地概括输入的信息。
推荐阅读
- 小鱼人|如何在新赛季稳定上分?善于抓失误的小鱼人,值得认真练上一波
- 阴阳师|阴阳师SR川猿强度如何 是否值得抽卡 改变斗技环境 大佬的新玩具
- 手机游戏|梦幻西游手游:活力如何换金币 一切都已给出 就看你的选择
- 华佗|三国杀:两位\奶爸\,朱治与华佗比,强度如何呢?
- 亲朋上分|《亲朋上分》266391亲朋下分亲朋上下分永劫无间崔三娘技能介绍 崔三娘如何获得更多技能
- s6|金铲铲之战:S6双城传说如何才能快速上手?基础知识很关键
- |冰雪传奇:平民玩家四转后如何打金
- 穿越火线|CF:传说武器再度上新,那王者、炫金该如何发展?
- 打野|打野已经被削到几乎不能再削了,到底如何平衡打野位置?
- 电子竞技|新华社对话明凯、阿布,探讨电竞选手是如何炼成的?宁王无辜躺枪