如何提取网络架构的先验知识?为它画幅素描吧!( 二 )

论文地址:http://www.math.tau.ac.il/~nogaa/PDFS/amsz4.pdf

举个例子,假设你进入了一个房间,大略地扫了一眼里面的物体。如果你要求现代机器学习算法回答一些它在训练时见过的问题,它可以立刻给出很好的答案:「这里有猫吗?如果有,它多大?」现在,假设我们在一年中每一天都会看一遍这个房间,人类可以回想起他们在这段时间观察房间的情景:「房间里有出现一只猫的频率如何?我们通常是在早上还是晚上看这个房间?」那么,我们是否可以设计一类系统,它们能高效地回答这类基于记忆的问题呢(即使它们在训练中没有出现过)?

在 ICML2019 上发表的文章「Recursive Sketches for Modular Deep Learning(https://arxiv.org/abs/1905.12730)中,我们探索了如何简洁地概括机器学习模型理解输入的方式。对于一个现有的(训练好的)机器学习模型,我们用其计算的「速写」增强它,并用这些「速写」来高效地回答基于记忆的问题——比如计算图像间的相似度,并总结一些统计数据(尽管事实上相比于将完整的原始计算过程存储下来,这些「速写」占用的内存要少得多)。

基础「速写」算法

推荐阅读