李杰:工业人工智能催动制造业升级

传统人工智能概念始于上世纪50年代,半个多世纪以来,人类利用自然语言、神经辨识、神经网络或形象辨识等方法,让机器学习规律,进而提供广泛维度解决方案。

相较于前者,工业人工智能隶属垂直领域,其属性聚焦于工业制造系统,涉及汽车、飞机、轮船等移动工具的安全性、节能性、耗油性,工业制造机器人的稳定性、精密性,风力发电的效益性、节能性等相关课题。

虽然人工智能应用于生产制造的前景广阔,但要从概念实现落地,产生规模效益,还需要清晰可行的研究方法。从业者或许可以从《工业人工智能》一书中找到答案。

《工业人工智能》由美国辛辛那提大学特聘讲座教授、美国国家科学基金会(NSF)智能维护系统产学合作中心(IMS)创始主任、美国工业人工智能中心创始主任李杰(Jay Lee)所著,在这本书中,李杰将过去在美国工业大数据挑战中所参与的实际案例列出,让读者能够通过这些案例了解工业人工智能的定义与意义、如何用算法去解决工业系统问题。

“我在美国近40年从事智能制造以及工业大数据的产学研工作,深深地体会到企业从精益到智能制造的转型工程中,人才、技术管理和执行上的挑战。”近日,李杰接受了澎湃采访人员的专访,分享了其对工业人工智能的理解。

推荐阅读