打破数据孤岛:联邦学习近期重要研究进展(23)
考虑一种迭代优化方法,给定 B^j,找到相应的最优分配,然后随机选取一个新的 j,直到收敛。本文对上式进行了数学计算并用 Hungarian 算法进行求解。下图 1 中总结了整个单层推理过程。
图25/49
图 1. 三个 MLPs 匹配的单层概率联邦神经匹配算法.
2)多层神经匹配
分析到目前为止,本文给出的模型可以处理任意宽度的单层神经网络,从理论上讲,该单层网络能够模拟逼近任何目标函数。下一步,通过定义从输出到输入(自上而下)的深度神经网络权值生成模型,本文将单层神经网络匹配扩展到对深度网络的匹配中。
令 C 表示多层网络结构中的隐层数量,L^c 表示第 c 层的神经元数量,L^(C+1)=K 为标签数量,L^0=D 为输入维度。在自上而下的方法中,全局原子不再是构成单个神经元隐层模型中的神经元的权重,而是来自神经元的输出权重的向量。
推荐阅读
- 捉迷藏|?LOL世界赛“含金量”数据出炉:EDG仅排第六,IG稳居榜首
- ag战队|AG超玩会的轮换就是花架子,一诺英雄达到十八位,打破单赛季纪录
- 碧蓝航线|碧蓝航线SR重巡福煦数据详解 期待越高失望越大 强度平平无奇
- kramer|国服极地大乱斗数据上线,来看看胜率榜符合你的预期吗?
- 孤岛惊魂6|英雄联盟世界赛参赛队分析!EDG战队!
- 米莱狄|峡谷数据榜:分均输出TOP5,干将莫邪只排第四,米莱狄至今被误解
- 育碧|“不患均而患不寡”,育碧给刺客信条和孤岛惊魂团队涨薪
- ai|S11AI预测离全对就差最后一场!EDG能否打破不败之身?
- |S11淘汰赛数据盘点:场均时长为33分 55个不同英雄登场
- 中单|2021年英雄联盟世界赛终于落下帷幕!!大数据统计二!!