打破数据孤岛:联邦学习近期重要研究进展( 九 )

打破数据孤岛:联邦学习近期重要研究进展

图5/49

为实现上式优化,本文提出了一种基于贪婪算法的启发式算法,具体流程如下:

打破数据孤岛:联邦学习近期重要研究进展

图6/49

将模型上载和更新操作所用时间最少的客户端迭代添加到 S,直到运行时间 t 达到截止时间 T_round。整个算法中最关键的参数为 T_round,本文将 T_round 设置为较大值,从而能够保证更多的客户端参与到每轮上载和更新中。

实验验证

1)模拟环境:本文在一个城市小区域的蜂窝网络上模拟了一个 MEC 环境,由一个边缘服务器、一个 BS 和 K=1000 个客户端组成,同时包含一个带有 GPU 的工作站。基站和服务器位于小区中心,半径为 2km,客户端在小区内均匀分布。

2)机器学习任务的实验设置:选择 CIFAR-10、 MNIST 数据库。首先,随机确定每个客户端拥有的图像数据的数量,范围为 100 到 1000。以两种方式将培训数据集分成客户机:IID 设置,其中每个客户端只从整个训练数据集中随机抽取指定数量的图像;Non-IID 设置,其中每个客户端随机抽取图像,但来自训练数据的不同子集(随机选择的 10 个类别中的 2 个类别)。

推荐阅读