原创<br> MIT+IBM同时利用AI探索神经科学,让脑科学研究如虎添翼( 四 )

另一方面,图像分割是基于共享特征对图像像素进行标记的过程,而磁共振成像的图像又是一个以三维像素形式呈现的体素。

因此,神经科学的研究人员经常需要根据大脑的解剖结构,对体素区域进行分离和标记,手工进行图像分割。

Amy与麻省理工学院博士后助理Guha Balakrishnan、Frédo Durand教授、John V. Guttag教授,以及资深作家Adrian V. Dalca,使用单一标记的分段脑MRI扫描和一组100个未标记的病人扫描,完成了自动化神经科学图像分割过程。

在研究过程中,研究人员使用了两个卷积神经网络。

首先,卷积神经网络从100个未标记的扫描中学习亮度、对比度、噪声和空间变换流场(指运动流体所占的空间区域里的速度、压强等因素)的变化,这些变化模拟了扫描之间的体素运动。

其次,为了合成新的标记扫描,系统生成一个随机的流场,并将这个随机的流场应用于标记的MRI扫描,以匹配未标记扫描数据集中实际患者的MRI。然后,系统将所学习到的亮度、对比度和噪声变化进行随机组合。

推荐阅读