原创<br> MIT+IBM同时利用AI探索神经科学,让脑科学研究如虎添翼( 七 )

每次种群迭代后,进化算法将计算每个搜索点的适应度,并保留最强(较高的目标值)的搜索点,删除最弱(较低的目标值)的搜索点。

通过这种方式,搜索点的种群经过几代人的进化,将产生解决问题的最佳方案,而适者生存的变异依然存在。

进化算法在本质上是分布式的,这使得它非常适合基于云端或大规模并行的多核处理。

在这项针对亨廷顿舞蹈病(Huntington’s disease)的神经科学研究中,研究人员使用了IBM Cloud上的一种最新的非主导排序差异进化(NSDE)算法。

参与这项研究的IBM主发明人、神经科学家James R. Kozloski表示,他们引入了误差函数的软阙值和邻域惩罚,以防止由于目标是精确的特征值而导致的系统偏差。

Kozloski表示,他们使用NSDE框架来修正误差,并根据先前选择的0个误差模型的特征空间和“拥挤度”进行惩罚,从而使算法尽可能均匀地覆盖0个错误区域。这让他们能够创建适合数据的各种参数模型,而不仅仅是单一模型。

该项研究的算法设计大师Tim Rumbell博士和Thomas J. Watson研究中心的计算神经学家表示,这个算法最终将帮助模型进行推广,因为他们支持算法寻找一个参数空间区域,该区域能生成像实验期间所有神经元一样响应的模型。

推荐阅读