原创<br> 入职一年后,一位算法工程师给初学者的一封信( 十 )

橡皮鸭方法是同事Ron教会我的,遇到问题的时候,坐下来盯着代码可能会解决问题,但也有可能不会, 此时,不如用队友的语言重述,就像你的橡皮鸭。

“Ron,我正在尝试遍历这个数组,并通过循环另一个数组以及跟踪它的状态来尝试跟踪这个数组的状态,然后我想将这些状态组合成一个元组列表。”

“循环中的循环?你为什么不把它矢量化呢?“

“我能这样做吗?”

“让我们来看看。”

“...”

迁移学习很重要

你不需要从底层重构模型,这个问题来自于机器学习工程与软件工程的融合。除非您的数据问题非常具体,否则许多主要问题非常相似,分类,回归,时间序列预测,推荐系统。

谷歌和微软的AutoML等服务,只需要上传数据集并选择目标变量,就可以轻松使用机器学习。但是这些事情还在初始阶段,尚未成形。如果你是开发人员,只需要fast.ai这样的库,就可以在几行代码中使用最先进的模型,以及各种模型的预建的模型,例如,PyTorch hub和TensorFlow提供相同的功能。

推荐阅读