谷歌公布亚毫秒级人脸检测算法 人脸检测又一突破( 七 )

我们在 66K 图像的数据集上训练我们的模型。为了评估实验结果,我们使用了由 2K 图像组成的地理位置多样数据集。

对于前置摄像头模型,它只考虑占据图像区域的 20%以上的面部,这是由预期的用例决定的(后置摄像头型号的阈值为 5%)。

回归参数误差采用眼间距离(IOD)进行尺度不变性归一化,中值绝对误差为 IOD 的 7.4%。通过上述程序评估的抖动度量是 IOD 的 3%。

图 4 显示了所提出的正面人脸检测网络的平均精度(AP)度量(标准 0.5 交叉联合边界框匹配阈值)和移动 GPU 推理时间,并将其与基于 MobileNetV2 的目标检测器(MobileNetV2-SSD)进行了比较。我们在 16 位浮点模式下使用 TensorFlow Lite GPU 作为推理时间评估的框架。

谷歌公布亚毫秒级人脸检测算法 人脸检测又一突破

图 4 前置相机人脸检测性能

图 5 给出了更多旗舰设备上两种网络模型的 GPU 推理速度的透视图:

推荐阅读