市场爆发前夜,这20家企业争夺亿万级底盘肥肉丨机器人底盘企业盘点( 四 )

机器人底盘的技术壁垒在于,不同场景下的多传感器的融合具有一定的技术门槛。

从物理层面上来看,机器人底盘则主要是众多传感器的集成,激光雷达、双目视觉、超声、红外、以及轮毂电机、轮子等必要的悬挂。而如何将物理层面的硬件进行集合,则需要相应的算法和软件等相应技术。

目前SLAM是业内主流的定位导航技术,当我们谈到SLAM时,最先问到的就是传感器。SLAM的实现难度和传感器的形式与安装方式密切相关,传感器分为激光和视觉两大类,所以SLAM定位导航技术中有激光SLAM和视觉SLAM之分。

激光SLAM脱胎于早期的基于测距的定位方法,激光雷达的出现和普及使得测量更快更准,信息更丰富。激光雷达采集到的物体信息呈现出一系列分散的、具有准确角度和距离信息的点,被称为点云。通常,激光SLAM系统通过对不同时刻两片点云的匹配与比对,计算激光雷达相对运动的距离和姿态的改变,也就完成了对机器人自身的定位。

那什么是视觉SLAM呢?

眼睛是人类获取外界信息的主要来源,视觉SLAM也具有类似特点,它可以从环境中获取海量的、富于冗余的纹理信息,拥有超强的场景辨识能力。早期的视觉SLAM基于滤波理论,其非线性的误差模型和巨大的计算量成为了它实用落地的障碍。随着近年相机技术和计算性能的进步,实时运行的视觉SLAM也已实现。

推荐阅读