深度解读达芬奇架构:华为AI芯片的“秘密武器”( 三 )

科普1:常见的AI运算类型有哪些?

在了解达芬奇架构的技术之前,我们先来弄清楚一下几种AI运算数据对象:

标量(Scalar):由单独一个数组成

向量(Vector):由一组一维有序数组成,每个数由一个索引(index)标识

矩阵(Matrix):由一组二维有序数组成,每个数由两个索引(index)标识

张量(Tensor):由一组n维有序数组成,每个数由n个索引(index)标识

其中,AI计算的核心是矩阵乘法运算,计算时由左矩阵的一行和右矩阵的一列相乘,每个元素相乘之后的和输出到结果矩阵。

在此计算过程中,标量(Scalar)、向量(Vector)、矩阵(Matrix)算力密度依次增加,对硬件的AI运算能力不断提出更高要求。 典型的神经网络模型计算量都非常大,这其中99%的计算都需要用到矩阵乘,也就是说,如果提高矩阵乘的运算效率,就能最大程度上提升AI算力——这也是达芬奇架构设计的核心:以最小的计算代价增加矩阵乘的算力,实现更高的AI能效。 科普2:各单元角色分工揭秘,Da Vinci Core是如何实现高效AI计算的?

推荐阅读