清华、李飞飞团队等提出强记忆力 E3D-LSTM 网络( 八 )

基于 E3D-LSTM 的半监督辅助学习

在许多监督学习任务,例如视频动作识别中,没有足够的监督信息和标注信息来帮助训练一个令人满意的 RNN,因此可以将视频预测作为一个辅助的表征学习方法,来帮助网络更好的理解视频特征,并提高时间域上的监督性。

具体的,让视频预测和动作识别任务共享相同的主干网络(图 1),只不过损失函数不同,在视频预测任务中,目标函数为:

带上标的 X 表示预测值,不带上标的表示真值,F 表示 Frobenius 归一化。

在动作识别任务中,目标函数为:

其中 Y 和是预测值和帧值,这样通过将预测任务的损失函数嵌入到识别任务中,以及主干网络的共享,能在一定程度上帮助识别任务学习到更多的时序信息。为了保证过渡平滑,额外添加了一个权重因子,会随着迭代次数的增加而线性衰减:

作者将这种方法称为半监督辅助学习。

实验结果

视频预测任务,在 Moving MINIST 数据集上的结果:

推荐阅读