四小时搜索NN结构,厦大提出快速NAS检索方法

机器之心专栏

作者:郑侠武

ICCV 2019 将于 10.27-11.2在韩国首尔召开,本次会议总共接受 1077 篇,总提交 4303 篇,接收率 25%。厦门大学媒体分析与计算实验室共有 6 篇论文接受其中两篇为 oral。

本文是论文一作郑侠武对论文《multinomial distribution learning for effective neaural architecture search》的解读。该论文由厦门大学媒体分析与计算实验室(纪荣嵘团队)、深圳鹏城实验室合作完成,旨在降低神经网络结构检索(NAS)中搜索消耗的计算量。

论文代码:https://github.com/tanglang96/MDENAS

摘要

近年来,通过神经架构搜索(NAS)算法生成的架构在各种计算机视觉任务中获得了极强的的性能。然而,现有的 NAS 算法需要再上百个 GPU 上运行 30 多天。在本文中,我们提出了一种基于多项式分布估计快速 NAS 算法,它将搜索空间视为一个多项式分布,我们可以通过采样-分布估计来优化该分布,从而将 NAS 可以转换为分布估计/学习。

推荐阅读