四小时搜索NN结构,厦大提出快速NAS检索方法( 三 )

主要方法

1. 精度排序假设

大多数 NAS 方法使用标准训练和验证对每个搜索的神经网络结构进行性能评估,通常,神经网络必须训练到收敛来获得最终的验证集的评估,这种方式极大的限制了 NAS 算法探索搜索空间。但是,如果不同结构的精度排序可以在几个训练批次内获取,为什么我们需要在将神经网络训练到收敛?

例如下图二,我们随机采样四个网络结构(LeNet,AlexNet,ResNet 和 DenseNet)在不同的次数下,在训练集和测试集中的性能排名是一致的(性能排名保持为 ResNet-18> DenseNet-BC> AlexNet> LeNet 在不同 网络和训练时代)。

四小时搜索NN结构,厦大提出快速NAS检索方法

图1/10

图 2 精度排序假设

基于这一观察,我们对精度排序提出以下假设:在训练过程中,当一个网络结构 A 的精度比网络结构 B 要好,那么当收敛的时候,网络结构 A 的表现也优于网络结构 B.

推荐阅读