PyTorch横扫各大顶会,TensorFlow退守工业界:机器学习框架,一年间局势突变( 四 )

虽然,看上去TensorFlow还有两项数据在增长,但其实只有ICML的涨幅 (32.5%) ,还跟得上会议总录取论文数的增长。

也就是说,在另外四场会议上,TensorFlow已经开始衰退了。

PyTorch横扫各大顶会,TensorFlow退守工业界:机器学习框架,一年间局势突变

为何研究人员爱PyTorch?

一是简单。它和NumPy比较像,风格很Python,能轻易和Python生态集成起来。

比如,你只要把一个pdb断点扔进PyTorch模型里,它直接就能用了。

相比之下,在TensorFlow模型里面debug的话,便会复杂得多了。

二是API好。比起TensorFlow的API,大多数研究人员更偏爱PyTorch的API。PyTorch设计得更科学;而TensorFlow要在各种API之间切换,令人操作不便:

‘layers’ -> ‘slim’ -> ‘estimators’ -> ‘tf.keras’

三是性能。虽然PyTorch的动态图 (Dynamic Graphs) 提供的优化空间比较小,但许多用户都反馈说PyTorch的速度不亚于TensorFlow,甚至比对方还快。

推荐阅读