数据|产品经理整理埋点需求的6个步骤( 二 )
4)埋点的前后端区分对不对,这个之前也有讲,如果只是事件本身其实一般做前端埋点,如果还要统计结果,譬如提交内容成功这种的就需要做后端埋点。
5)属性定义完不完整,属性会包含很多东西,譬如类型、渠道之类的,会有多个,在这个时候一定要看一下是不是全部包含了,漏掉的话在统计的时候就会有问题,虽然技术后面可能还会来确认,但是少让技术问比较好,人设靠谱。
第六步,给技术看一下,看看是不是有哪些地方需要进一步细化说明,针对性地做补充说明。这个步骤一般就是细节没讲清楚,譬如页面访问,那么什么情况下定义为一次访问,需要说明这个页面100%加载成功了才算一次访问。
埋点需求交付以后技术会排期开发,开发完之后的验收也是一个比较重要的环节,根据我们的经验埋点通常会有遗漏或者采集不完整、采集不准确的情况。
那么埋点数据怎么验收呢?
如果你有技术背景,那么就去看操作之后相应的数据字段有没有入库;如果没有技术背景那么就去看统计报表上会不会反应出来。譬如你打开一个页面,就去看一下统计报表上这个页面的访问人数和访问次数有没有+1。
埋点验收是需要一个一个页面、一个一个操作看过去的,所以可以结合页面验收一起做。
那么验收了之后就没有问题了吗?
不是的,实际上我认为即便是做了验收,也无法彻底解决数据不准确的问题,因为会有数据污染的问题,单次验收仅仅只是个例,而数据污染可能是个普遍性的问题。
从实践经验来看也是这样,大部分小厂都无法解决数据的准确性问题,数据污染问题比较严重,如果是大厂那么就会相对好很多。
数据污染产生的原因比较复杂,可能的原因是采集的时候就不对,或者提需求的时候不够准确。大概率会需要一个逐渐修复的过程,而且是一个相对长期的过程。所以如果发现数据不准确的话不要慌,一点点修复就行。说实话其实急也没用,这种就是需要花时间做的东西,表面看不到的才更花功夫。
另外,如果说技术部门愿意做全埋点的话就不需要产品额外提数据需求,如果是这样,那么必须感谢他们,因为他们为你保留了更多的头发,不至于秃的那么快,头发就是生命啊。
最后说一下并不是所有的公司都需要自己做数据这块的,如果公司的业务还处在比较早期的阶段,那么使用神策、Growing IO这些三方数据公司的产品也是一个比较好的选择。毕竟这东西做起来耗时耗力,如果不准的话头会很痛。
以上是对数据埋点方面的分享,下回分享一下数据统计报表方面的内容,算是做个衔接。
本文由 @代号道长 原创发布于人人都是产品经理。未经许可,禁止转载
题图来自 Unsplash,基于 CC0 协议
推荐阅读
- 空中上网|中国电信推出空中上网产品
- 奥瑞金:预制菜系列产品研发及其包装业务已推出首批产品
- 手机银行|漫谈金融产品数据可视化
- 商家|网购衣服7天内退货被拒,女子多次反映未果,商家晒出数据打脸
- 产品|又一行业曝光,90%是假货,曾被央视“点名”,你还在购买吗?
- 斐乐公司|网购平台销售数据可作为确定赔偿数额的依据
- 智慧销售|国务院:加快优化智能化产品和服务运营,培育智慧销售、无人配送、智能制造、反向定制等新增长点
- 基地|永嘉县岩坦镇将打造浙南最大农产品电商基地!
- 迅销集团|新疆回应“山姆下架新疆产品”:劝相关企业不要割自己肉贴美国脸
- 产品|使人惊艳的产品细节(十)