渠道|浅谈在探索数分之路上“数据思维”应用( 三 )


下面来以一个考勤类APP的新增渠道投放为例,如下表所示,假设现在有小米、华为、苹果等五个应用市场拉新投放渠道,通过一段时间的广告投放后,我们获取了各个渠道的新增数据、下载量、消耗费用及单个获客成本等数据。
渠道|浅谈在探索数分之路上“数据思维”应用
文章插图
首先,在对这几个渠道的数据有了基本的认知之后,明确其分析目标,我们可以根据广告投放的实际情况进行预算的控制和调整。比如,在缩减预算的情况下,应该如何优化投放费用的最优分配呢?
其次,理解数据,从5个渠道中可以看出,小米和oppo的单个企业获客成本最高,是做预算控制的首选渠道,应该削减这两个渠道的预算,这样能够快速产生成本压缩的效果。
进而,通过各个渠道的转化漏斗分析,看看各个渠道的转化率,环比往期数据,来优化新增渠道。其目的可以测试不同策略和素材的效果,还可以横向对比不同投放方式的渠道拉新成本,择优选择。我们就按小米渠道的各环节转为为例,转化环节可以简单的分为下载→激活→注册→创建企业。如图所示:
渠道|浅谈在探索数分之路上“数据思维”应用
文章插图
可根据小米渠道人群受众、广告页面、落地页以及注册方式等这些实际内容都可以通过测试数据,并进行调整优化。衡量优化效果的核心指标是漏斗对应层级的转化率是否得到提高。
在增加投放费用时,需要快速增加拉新量的情况下,又应该如何优化预算分配呢?这时,从数据上看将预算全都使用到单个企业获客成本最低的vivo渠道。但从实际的广告投放经验以及过往数据来看,vivo渠道的新增用户数相对最低,但用户精准度并不高,无法快速扩量。
最后,输出结论。根据往期数据以及用户质量和企业转化来看,苹果和华为渠道的用户精准度较高,才是扩大预算投放的首选渠道,因为从拉新量来看,这两个渠道也是大流量渠道,在平均拉新量较低的情况下,可以轻松扩量。
当然,在实际做用户拉新的广告投放时,数据比上述例子复杂得多,考虑的因素也叫多,我们需要能够通过实际数据对比,不断地优化预算分配,以获得性价比更高的渠道投放策略。
三、总结数据思维是一种底层的思维模式,其作用有:

  • 用数据作为分析素材,提高制定决策的合理性以及科学性;
  • 从纷繁复杂的现象中找到问题与短板,有助于找到解决方案;
  • 快速准确的调整工作方向,提高与公司战略及发展阶段的匹配性。
还有,数据思维不同于数据知识和数据技能,数据思维是用数据提出问题和找到解决问题的办法。其次,数据思维要发挥作用,需要与其他的能力组合。如问题意识、行动能力,这些都是与数据思维不同的能力和品质,它们与数据思维组合起来,创造更高效的价值。
总之,数据思维所涉及的知识点远远不止上述梳理的这些,还需要我们不断的认知升级,观念更新,来扩大对自己掌握的数据知识和数据技能的理解。
#专栏作家#木兮擎天@,微信公众号:木木自由,人人都是产品经理专栏作家。多年互联网数据运营经验,涉猎运营领域较广,关注于运营、数据分析的实战案例与经验以及方法论的总结,探索运营与数据的神奇奥秘!
本文原创发布于人人都是产品经理。未经许可,禁止转载
【 渠道|浅谈在探索数分之路上“数据思维”应用】题图来自unsplash,基于CC0协议

推荐阅读