搭建|分享:线下业务数据体系搭建( 三 )


这些事实怎么得出?通过数据的形式。
这些事实怎么校验?通过数据的形式。
举个例子,还是以我们上说的保险公司培训部门的例子。
假设当前保险公司的业务正常,市场正常,政策上国家没有对保险市场提出什么更为严苛的政策要求,在这些条件下:

  • 核心指标:保险专项培训对实际保险销售业务的影响大小;
  • 当前部门所处阶段:所有工作正常展开,外部竞争环境处在正常竞争环境下,无不良竞争情况;
  • 和核心指标有较强相关度的工作业务流程:根据外勤需求主动拆分培训需求-进行培训项目筛选-制定培训流程-设计培训课程-执行培训-跟进培训结果;
  • 历史变动情况:历史同类型课程的培训量几乎保持一致,培训频率也保持一致。
这些是相对比较概念化的事实,这时候就需要利用数据把所有的事实细化描述清晰,且所有的数据都需要和工作流程相关联。
同时,所有的业务数据分析都需要建立“时间”的概念,我们可以画一个时间轴来看这个业务流程:
搭建|分享:线下业务数据体系搭建
文章插图
每个业务流程下其实都需要一定时间完成当前工作状态的信息收集,数据本身就具有时间的特性,如果是金融公司、金融部门,还会对数据的时间序列有更严格的要求,因此,数据本身就需要打上所属时间的标签。
在业务流程中,记录每个事件发生时间点的数据,留存这些时间标签下的数据,完成基础数据源的汇总。
在分析中可以将分析划分为几层,可以先按“事前—事中—事后”的顺序留存各个事件发生时点的数据,从中尽量明确有规律性的节点,例如:
  • 从收到不同规模的培训需求到实际举办培训需要多长时间?
  • 培训完到培训成果检验需要间隔多久时间?
这些时点的数据收集可以帮助你深入了解业务流程,在日后做到各类自动化有很大程度上的帮助,这就是业务体系初步建立之后再进行优化的工作了。
在关注了业务的核心指标后,找到能够对核心指标产生影响的因素,将这些因素拆分成“事前—事中—事后”的形式,设定一定的主键完成数据特质化的积累。
以电商为例,电商可以以“订单号—用户ID”的形式,如果是在保险培训的角度下可以参训外勤人员ID作为主键,当然,不同的业务模式会有不同类型的主键,涉及的后续的一些数据内容也不一致。
还是以保险培训为例,在培训中有大量数据是没有办法轻松进行积累的,也同样不能很明确地进行量化,这时候就要建立评分卡的制度,用于量化一部分难以直接估量的行为数据。
比方说,A讲师培训营销技巧和保险学原理课程,两门课程完全不属于同一个课程体系下,在实际外勤作业中,营销技巧所能给实际业绩的增长是短期高效的,而保险学原理课程可能在提升外勤人员金融素养方面更为突出,可能在面对高净值客户的时候能更体现优势。
这部分提升并不会很直接的在实际销售业绩上有明确的体现,这时候就会需要对实际的培训效果进行分类归纳,建立不同评分评级制度。
类似于量化投资,这些数据都会需要和业务核心指标建模拟合判断,根据历史经验,最好是建立相关的多元线性回归模型,机器学习模型虽然在预测方面更具有优势。
但是实际可解释性并没有那么强,在实际业务总结反馈的时候并不能明确的找出问题所在,所以在预测分析的角度还是更推荐从线性回归的角度配合相关性进行分析。
希望分享的这些给现在还在线下摸索业务数据体系搭建的朋友们一些启发。

推荐阅读