张大姐|半年时间,拍摄8省市10个案例,我们见到了这样的智能中国( 三 )
说了好多年,做了很多事,听上去很厉害的AI技术,千算万算也没算过猪皮太厚这个问题——这样的困难在真正的AI落地中比比皆是。但如果花费大量人力物力,调集专家解决这个问题,最后的收益却可能连专家工资都付不起。
拍摄过一些案例,走访了一些垂直领域的技术公司,会发现田间地头、街头巷尾的智能化需求无穷无尽。很多需求你不跟专业的人聊聊,可能永远都想不到。比如张大姐就跟我们说,她们公司正在推动一个用AI给牛称体重的项目。对于广大农户来说,散养的牛是家中一个重要收入,买卖之前过程非常重要。但要把牛放在秤上可难, 需要专业的设备和人员。农户往往需要牵着牛走很远的路才能过一次秤。这就导致在乡间,很多时候给牛估算体重要依靠老师傅摸牛腿之类的方式。如果AI能解决这个问题,那会给农户带来实打实的价值。
这样的智能化需求,在中国特别多,也特别分散。发现问题和解决问题都不仅仅是技术的事情,而是需要不同领域的人、企业、平台,像多米诺骨牌一样推导和渗透过去。而首先,是需要各方面知道有这样一种关于智能的可能。
道阻且长,吾辈共勉。
走访了一些智能化案例之后,发现能够接待自媒体参观,愿意对外发声的企业,其实是有一些共性的。比如大多是新近十年规划的工程,并且在规划之初就考虑到了面向智能化、数字化的升级演进。但那些更老、更旧,缺乏智能化顶层设计和数字化基础设施的工厂、码头、矿山呢?这是一直萦绕在我们脑海中的未知。毕竟我们是希望拍摄智能化案例,那些还没有推动智能化的案例我们拍什么呢?但它们又是否需要智能化?答案恐怕是肯定的。
这让团队的小伙伴想到了欧洲和中国的对比。很多新的数字化、智能化技术在欧洲都难以推进,就是因为他们IT做得太早,如今基础设施能力已经跟不上了。但全面更新的成本又太高,最终只能选择一些保守的发展方案。如今这种情况在中国也已经出现,更新基础设施完全不如新建项目来得快和稳,并且也更容易得到各方支持。
根据我们比较片面的观察,面对这轮智能化浪潮,2000年以前的工业化设施已经出现了明显的数字化鸿沟。但那些老工厂、老车间里的设备和人未来何在?这应该是一个必须回答,但又不好回答的问题。
还有一种AI落地的难题也经常能够见到。新上马的自动化、智能化设备往往需要大量时间学习。而对于已经比较熟练的产业工人来说,学习新技术还不如接着用老设备更顺手。智能化建设是一把手和IT主管的事,一线产业工人的配合度却是另一回事。一些案例里我们也会发现,工人对智能技术还比较陌生。一些智能设备的作用仅仅是摆放在那,只有检查和评比的时候才打开。
这种情况其实很容易理解,毕竟大家对若干年来的工作习惯是有依赖的。这可能需要企业和供应链长效、持续的配合。AI落地需要的不仅仅是算法和软硬件,还需要人才培养、生态建设、管理变革等一系列辅助。
另外可能就想说说宣传了。这部分可能多少有点敏感,但我们的实际感受是,真的有很多案例和产业经验亟待普及。相关宣传足够充沛,AI落地的门槛才能越来越低。
但真正在产业中应用智能技术的大多是传统行业、传统企业,其中又以大型政企居多。他们本身宣传诉求较低,也缺乏比较新颖的宣传手段;且宣传中的主要考量是不能出错,不愿意提及企业与行业的痛点。这种情况当然可以理解,但也确实导致很多有价值的产业智慧和经验“不出工厂大门”。
提起AI,很多人会觉得没有用,价值不大,比较空洞,其实原因在于宣传。
推荐阅读
- 买家|网购到底有多不靠谱?看完网友分享的这10张照片让你知晓一切
- 英特尔|阿里张勇辞任微博董事;任泽平建议印钱2万亿生娃
- 上虞区|绍兴市上虞区章镇镇张村村
- cto|滴滴出行 CTO 张博卸任滴滴支付董事长
- 马云|张旭豪:辛辛苦苦创下饿了么,后以95亿美元卖给马云,现在如何了
- 滴滴支付|滴滴出行CTO张博退出滴滴支付董事长
- 滴滴出行 CTO 张博卸任滴滴支付董事长
- 董事|阿里张勇退出微博董事会,互联网巨头开始与被投企业进行切割
- 张一鸣|中国富豪榜排名发布,字节跳动的创始人张一鸣升至第二,马云呢?
- 塑料|又一风口!爆发式增长!5年内,迅“塑”扩张!上市公司纷纷盯上这块大“蛋糕”!