再起争执:DeepMind 与俄罗斯科学家就量子 AI 研究发生碰撞


再起争执:DeepMind 与俄罗斯科学家就量子 AI 研究发生碰撞


文章图片


再起争执:DeepMind 与俄罗斯科学家就量子 AI 研究发生碰撞



近日 , 总部位于伦敦的 Alphabet 研究公司 DeepMind 之前发表了一篇引人入胜的研究论文 , 其中声称已经解决了“用 AI 在量子尺度上模拟物质”的巨大挑战 。 现在 , 将近八个月后 , 来自俄罗斯和韩国的一组学术研究人员可能已经发现了原始研究的一个问题 , 该问题使该论文的整个结论受到质疑 。
如果论文的结论属实 , 这项前沿研究的影响可能是巨大的 。 从本质上讲 , 我们谈论的是使用人工智能 来发现操纵物质组成部分的新方法的潜力 。
这里的大想法涉及能够模拟量子相互作用 。 我们的世界是由物质组成的 , 物质由由原子组成的分子组成 。 在每个抽象级别 , 模拟变得越来越难 。
当你达到存在于原子内部的量子水平时 , 模拟潜在相互作用的问题变得非常具有挑战性 。

根据DeepMind的博客文章:

要在计算机上做到这一点 , 需要对电子进行模拟 , 电子是控制原子如何结合形成分子的亚原子粒子 , 也负责固体中的电流流动 。
尽管进行了数十年的努力并取得了一些重大进展 , 但准确地模拟电子的量子力学行为仍然是一个开放的挑战 。
基本问题是很难预测给定电子最终到达特定位置的概率 。 你添加的越多 , 复杂性就会增加 。
正如 DeepMind 在同一篇博文中指出的那样 , 1960 年代的一对物理学家提出了一个突破:

Pierre Hohenberg 和 Walter Kohn 意识到没有必要单独跟踪每个电子 。 相反 , 知道任何电子在每个位置的概率(即电子密度)就足以准确计算所有相互作用 。 Kohn 在证明这一点后获得了诺贝尔化学奖 , 从而创立了密度泛函理论 (DFT) 。
不幸的是 , 到目前为止 , DFT 只能简化这个过程 。 该理论的“功能”部分依赖于人类来完成所有繁重的工作 。
这一切都在去年 12 月发生了改变 , 当时 DeepMind 发表了一篇题为“通过解决分数电子问题推动密度泛函的前沿”的论文 。
在本文中 , DeepMind 团队声称通过开发神经网络从根本上改进了当前用于模拟量子行为的方法:

通过将泛函表达为神经网络并将这些确切的属性整合到训练数据中 , 我们学习了没有重要系统错误的泛函——从而更好地描述了广泛的化学反应 。
学者反击DeepMind 的论文通过了最初的正式审查过程 , 一切顺利 。 直到 2022 年 8 月 , 一个由来自俄罗斯和韩国的八名学者组成的团队发表评论质疑其结论 。
根据斯科尔科沃科学技术学院的新闻稿:

DeepMind AI 概括此类系统行为的能力并非来自已发布的结果 , 需要重新审视 。
换句话说:学者们正在争论 DeepMind 的人工智能是如何得出结论的 。
根据评论研究人员的说法 , DeepMind 用于构建其神经网络的训练过程教会了它如何记住在基准测试期间将面临的特定问题的答案——科学家通过该过程确定一种方法是否优于另一种方法 。
研究人员在评论中写道:

虽然柯克帕特里克等人的结论 。 关于 FC/FS 系统在训练集中的作用可能是正确的 , 但这并不是他们观察到的唯一可能的解释 。
在我们看来 , DM21 在 BBB 测试数据集上的性能相对于 DM21m 的改进可能是由一个更平淡无奇的原因引起的:训练数据集和测试数据集之间的意外重叠 。
如果这是真的 , 那就意味着 DeepMind 实际上并没有教神经网络来预测量子力学 。
人工智能的回归DeepMind 反应迅速 。 该公司在发表评论的同一天发表了回应 , 并立即做出了坚定的谴责:

我们不同意他们的分析 , 并认为提出的观点要么不正确 , 要么与论文的主要结论以及对 DM21 总体质量的评估无关 。

该团队在整个反驳过程中对此进行了扩展:

DM21 不记忆数据;DM21 Exc 在 BBB 中考虑的整个距离范围内变化并且不等于无限分离极限 , 如图 1 中的 A 和 B 所示 , 对于 H2+ 和 H2 , 这一事实简单地表明了这一点 。 例如 , 在 6 ? 处 , DM21 Exc 与 H2+ 和 H2 的无限极限相差约 13 kcal/mol(尽管方向相反) 。
而且 , 虽然解释上述行话超出了本文的范围 , 但我们可以有把握地假设 DeepMind 很可能已经为这个特定的反对意见做好了准备 。

推荐阅读