y=xcosx是周期函数吗
【y=xcosx是周期函数吗】y=xcsx不是周期函数 。对于函数y=(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数 。
证明:假设y=xcosx是周期函数,
因为周期函数有f(x+T)=f(x),
xcosx=(x+T)cos(x+T)=xcosx*cosT-xsinx*sinT+Tcosx*cosT-Tsinx*sinT,
所以cosT=1,T=kπ/2 。
-xsinx*sinT+Tcosx*cosT-Tsinx*sinT=0,
-xsinx*sinT-Tsinx*sinT=0,
(x+T)sinx*sinT=0,
只能是sinT=0,T=kπ和T=kπ/2矛盾,
所以不是周期函数 。
推荐阅读
- 幼儿音乐欣赏曲目 幼儿指的是多大的孩子
- 哪些是国家副部级建制的重点大学
- 下一站是幸福有小说吗 你知道了吗
- 四个月的泰迪狗能吃鸡胸肉吗
- 银行本票是什么科目
- 备胎三部曲是哪三首
- 网鱼网咖和斗鱼直播是一家公司吗
- 狗腹水是怎么引起的
- 开机是按DEL就黑屏
- 汽车上香水怎么放