为什么水在4℃密度最大?为什么重水和普通水的熔点不同?

为什么水在4摄氏度左右密度最大?为什么冰会浮?为什么重水和普通水的熔点不同?为什么雪花有六重对称?
【为什么水在4℃密度最大?为什么重水和普通水的熔点不同?】洛桑联邦理工学院(Ecole Polytechnique Federale de Lausanne)、哥廷根大学(University of Gottingen)和维也纳大学(University of Vienna)的研究人员进行了一项合作研究 , 将数据驱动的机器学习技术和量子力学结合起来 , 为这些问题提供了物理上的洞见 。这项研究于2019年1月2日发表在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)上 。大多数可观测物质的基本成分是电子和原子核 。遵循量子力学的定律 , 它们的行为可以用波函数来描述 , 这是一种弥漫的云 , 与在给定的时间点观察它们的概率有关 。

为什么水在4℃密度最大?为什么重水和普通水的熔点不同?

文章插图
博科园-科学科普:通过求解薛定谔方程 , 可以对包括水在内的任何物质进行模型和预测 。但有一个问题 。随着电子和原子核数量的增加 , 即使使用最快的超级计算机 , 甚至在优化此类计算方面取得了一个世纪的著名进展之后 , 所涉及的复杂性也很快变得难以处理 。事实上 , 对于原子超过几百个 , 或者时间超过一纳秒的系统 , 也就是1/ 1000,000,000th秒 , 量子力学计算仍然负担不起 。为了克服这些苛刻的限制 , 研究人员利用人工神经网络(ANN)从量子力学中学习原子间的相互作用 。神经网络结构可以表示为几个相互连接的节点层 , 这些节点层模拟了人脑神经元的结构 。神经网络首先学习原子间的量子力学相互作用 , 然后快速预测原子系统的能量和力 , 而不需要进行昂贵的量子力学计算 。到目前为止 , 这一切听起来都像是机器学习的典型成功案例 。
为什么水在4℃密度最大?为什么重水和普通水的熔点不同?

文章插图
图片:pexels/pexels license
然而其中也有微妙之处 。与实际的量子力学计算相比 , 神经网络有一个残余误差:大多数情况下 , 它会引入一个很小的噪声 , 有时它会胡乱猜测输入是否与它学过的任何东西有很大不同 。如何避免人工神经网络的陷阱?研究人员没有单独使用ANN来预测原子系统 , 而是将其作为替代模型 。从本质上讲 , 有限温度下材料性能的计算通常涉及到许多计算步骤 , 这些繁琐的重复部分可以委托给廉价的替代模型 。最后 , 代理真理与基础真理的区别 , 也就是人工神经网络与量子力学的区别 , 可以从最终的预测中得到解释和减去 。利用这些技术 , 研究人员可以从量子力学中再现水的几种热力学性质 , 包括冰和水的密度、正常水和重水熔融温度的差异以及不同形式冰的稳定性 。
为什么水在4℃密度最大?为什么重水和普通水的熔点不同?

文章插图
将人工神经网络应用于水和冰的热力学性质计算 , 揭示了量子核涨落的重要影响 。图片:Christoph Dellago
此外 , 这项研究还揭示了一些关于冰和水的特殊性质的物理见解 。最值得注意的发现之一是核量子涨落 , 即像氢这样的轻元素更像扩散云而不是局域粒子的倾向 , 促进了冰内部分子的六边形排列 , 最终导致雪花的六倍对称 。到目前为止 , 这一切听起来都像是机器学习的典型成功案例 。然而其中也有微妙之处 。与实际的量子力学计算相比 , 神经网络有一个残余误差:大多数情况下 , 它会引入一个很小的噪声 , 有时它会胡乱猜测输入是否与它学过的任何东西有很大不同 。如何避免人工神经网络的陷阱?研究人员没有单独使用ANN来预测原子系统 , 而是将其作为替代模型 。
为什么水在4℃密度最大?为什么重水和普通水的熔点不同?

文章插图
从本质上讲 , 有限温度下材料性能的计算通常涉及到许多计算步骤 , 这些繁琐的重复部分可以委托给廉价的替代模型 。最后 , 代理真理与基础真理的区别 , 也就是人工神经网络与量子力学的区别 , 可以从最终的预测中得到解释和减去 。利用这些技术 , 研究人员可以从量子力学中再现水的几种热力学性质 , 包括冰和水的密度、正常水和重水熔融温度的差异以及不同形式冰的稳定性 。此外 , 这项研究还揭示了一些关于冰和水的特殊性质的物理见解 。最引人注目的发现之一是 , 核量子涨落(即氢等轻元素的行为更像弥散云而不是局部粒子的趋势)促进了冰内分子的六边形堆积 , 最终导致了雪花的六重对称性 。
为什么水在4℃密度最大?为什么重水和普通水的熔点不同?

文章插图

    推荐阅读