云脑科技徐昊:AutoML 工程实践与大规模行业应用( 三 )

云脑科技徐昊:AutoML 工程实践与大规模行业应用

图1/10

在工程应用的落地方面,AutoML 还处于实验阶段,模型的优化和调试效率有一定的问题,但是工程潜力巨大。它的缺点是:计算量巨大,不能满足项目快速迭代的需求;目前仅限于调参问题;在搜索和优化的过程中像一个黑盒子,人机交互较少。因此,AutoML 在大项目中应用落地还存在一定的问题。

云脑科技徐昊:AutoML 工程实践与大规模行业应用

图2/10

在工程实践中落地要考虑哪些因素呢?首先是精确度、工程迭代速度、Serving 压力,然后如果是深度学习,还要考虑深度学习优化加速,最后,线上模型的动态效果也需要考虑,因为线上模型的表现和线下的可能不一样。那么,对应的优化环节是下图左边的样本效率、特征效率、模型选择、优化效率和线上策略效率。

云脑科技徐昊:AutoML 工程实践与大规模行业应用

推荐阅读